Non-Rationalised NCERT Books Solution | ||||||
---|---|---|---|---|---|---|
6th | 7th | 8th | 9th | 10th | 11th | 12th |
Chapter 9 Algebraic Expressions and Identities
Welcome to the solutions guide for Chapter 9: Algebraic Expressions and Identities. This chapter significantly elevates your journey into algebra, moving beyond the foundational operations of addition and subtraction learned previously. Here, the focus shifts to the crucial skill of multiplying algebraic expressions and introduces a set of powerful tools known as standard algebraic identities. These identities are not merely formulas to memorize; they represent fundamental relationships that provide elegant shortcuts for both multiplying specific types of expressions and for the reverse process of factorization. Mastering the techniques in this chapter is absolutely essential for developing the fluency in algebraic manipulation required for tackling more advanced topics like factorization (covered in Chapter 14) and solving higher-degree equations.
The solutions provided offer systematic methods for multiplying various combinations of polynomials. Building upon the distributive property learned earlier, the scope expands:
- Monomial by Monomial: Multiplying single-term expressions (e.g., $(3x) \times (5xy) = 15x^2y$).
- Monomial by Polynomial: Applying the distributive property to multiply a single term by each term within a binomial or trinomial (e.g., $2a \times (3b - 5c) = (2a \times 3b) - (2a \times 5c) = 6ab - 10ac$).
- Polynomial by Polynomial: This is a major focus, particularly:
- Binomial by Binomial: Multiplying two two-term expressions, ensuring every term in the first binomial multiplies every term in the second (e.g., $(a+b)(c+d) = a(c+d) + b(c+d) = ac + ad + bc + bd$). The solutions demonstrate this systematic expansion, often followed by combining any like terms.
- Binomial by Trinomial: Extending the same principle to multiply a two-term expression by a three-term expression.
Central to this chapter is the introduction and application of Standard Algebraic Identities. These are special equations that hold true for all values of the variables involved. The solutions thoroughly explain and utilize the four fundamental identities:
- The Square of a Sum: $\mathbf{(a + b)^2 = a^2 + 2ab + b^2}$
- The Square of a Difference: $\mathbf{(a - b)^2 = a^2 - 2ab + b^2}$
- The Difference of Squares: $\mathbf{(a + b)(a - b) = a^2 - b^2}$
- Product of Binomials (General Form): $\mathbf{(x + a)(x + b) = x^2 + (a + b)x + ab}$
The solutions demonstrate the power of these identities in multiple ways:
- Simplifying Multiplication: When multiplying binomials that fit the pattern of one of these identities (e.g., $(2x+3y)^2$, $(p-5q)^2$, $(7m+2n)(7m-2n)$, $(y+3)(y+7)$), applying the corresponding identity provides a direct shortcut to the expanded form, bypassing the longer term-by-term multiplication.
- Factorization Aid: Although detailed factorization is covered later, these solutions introduce the idea of using identities in reverse – recognizing an expression like $x^2 - 9$ as fitting the $a^2 - b^2$ pattern and factorizing it as $(x+3)(x-3)$.
- Numerical Calculation Shortcuts: A particularly clever application highlighted is using identities to perform seemingly complex numerical calculations quickly. Solutions illustrate evaluating expressions like:
- $103^2$ by treating it as $(100 + 3)^2$ and applying $(a+b)^2$.
- $98^2$ by treating it as $(100 - 2)^2$ and applying $(a-b)^2$.
- $102 \times 104$ by treating it as $(100 + 2)(100 + 4)$ and applying $(x+a)(x+b)$.
- $53 \times 47$ by treating it as $(50 + 3)(50 - 3)$ and applying $(a+b)(a-b)$.
Through numerous step-by-step solutions for multiplying polynomials and applying these standard identities for simplification and evaluation, this chapter solidifies the essential manipulative skills that underpin much of higher algebra.
Example 1 & 2 (Before Exercise 9.1)
Example 1: Add: 7xy + 5yz – 3zx, 4yz + 9zx – 4y , –3xz + 5x – 2xy.
Answer:
Solution:
We need to add the three algebraic expressions:
1. $7xy + 5yz – 3zx$
2. $4yz + 9zx – 4y$
3. $–3xz + 5x – 2xy$ (Note that $xz$ is the same as $zx$)
Method 1: Horizontal Addition
We write all the expressions in a single line and then group the like terms together.
$(7xy + 5yz – 3zx) + (4yz + 9zx – 4y) + (–2xy – 3zx + 5x)$
Removing the brackets:
$7xy + 5yz – 3zx + 4yz + 9zx – 4y – 2xy – 3zx + 5x$
Now, we rearrange and group the like terms:
$(7xy – 2xy) + (5yz + 4yz) + (–3zx + 9zx – 3zx) – 4y + 5x$
Combining the coefficients of the like terms:
$(7-2)xy + (5+4)yz + (-3+9-3)zx - 4y + 5x$
$5xy + 9yz + 3zx - 4y + 5x$
Method 2: Columnar Addition
We arrange the expressions in rows with like terms vertically aligned in columns.
$\begin{array}{ccccccccc} & 7xy & + & 5yz & - & 3zx & & & \\ & & & 4yz & + & 9zx & - & 4y & \\ + & -2xy & & & - & 3zx & & & + 5x \\ \hline & 5xy & + & 9yz & + & 3zx & - & 4y & + 5x \\ \hline \end{array}$
Adding the coefficients in each column gives us the same result.
Final Answer:
The sum of the given expressions is $5xy + 9yz + 3zx + 5x - 4y$.
Example 2: Subtract 5x2 – 4y2 + 6y – 3 from 7x2 – 4xy + 8y2 + 5x – 3y.
Answer:
Solution:
We need to subtract the expression $(5x^2 – 4y^2 + 6y – 3)$ from $(7x^2 – 4xy + 8y^2 + 5x – 3y)$.
Method 1: Horizontal Subtraction
We write the expression as:
$(7x^2 – 4xy + 8y^2 + 5x – 3y) - (5x^2 – 4y^2 + 6y – 3)$
When we remove the second bracket, we change the sign of each term inside it:
$7x^2 – 4xy + 8y^2 + 5x – 3y - 5x^2 + 4y^2 - 6y + 3$
Now, we rearrange and group the like terms:
$(7x^2 - 5x^2) + (8y^2 + 4y^2) – 4xy + 5x + (-3y - 6y) + 3$
Combining the coefficients of the like terms:
$(7-5)x^2 + (8+4)y^2 - 4xy + 5x + (-3-6)y + 3$
$2x^2 + 12y^2 - 4xy + 5x - 9y + 3$
Method 2: Columnar Subtraction
We write the expressions in two rows, aligning the like terms. Then we change the sign of each term in the bottom row (the expression being subtracted) and add the columns.
$\begin{array}{cccccccccc} & 7x^2 & + & 8y^2 & - & 4xy & + & 5x & - & 3y & \\ & 5x^2 & - & 4y^2 & & & & & + & 6y & - & 3 \\ &(-)& (+) & & & & & & (-)& & (+) \\ \hline \end{array}$
After changing the signs and adding:
$\begin{array}{cccccccccccc} & 7x^2 & + & 8y^2 & - & 4xy & + & 5x & - & 3y & \\ - & 5x^2 & + & 4y^2 & & & & & - & 6y & + & 3 \\ \hline & 2x^2 & + & 12y^2 & - & 4xy & + & 5x & - & 9y & + & 3 \\ \hline \end{array}$
Final Answer:
The result of the subtraction is $2x^2 + 12y^2 - 4xy + 5x - 9y + 3$.
Exercise 9.1
Question 1. Identify the terms, their coefficients for each of the following expressions.
(i) 5xyz2 – 3zy
(ii) 1 + x + x2
(iii) 4x2y2 – 4x2y2z2 + z2
(iv) 3 – pq + qr – rp
(v) $\frac{x}{2}$ + $\frac{y}{2}$ − xy
(vi) 0.3a – 0.6ab + 0.5b
Answer:
In an algebraic expression, terms are parts of the expression separated by addition or subtraction signs. The coefficient of a term is the numerical factor multiplying the variable part.
(i) 5xyz2 – 3zy:
- Term 1: $5xyz^2$. Coefficient: 5.
- Term 2: $-3zy$. Coefficient: -3.
(ii) 1 + x + x2:
- Term 1: 1. Coefficient: 1.
- Term 2: x. Coefficient: 1.
- Term 3: $x^2$. Coefficient: 1.
(iii) 4x2y2 – 4x2y2z2 + z2:
- Term 1: $4x^2y^2$. Coefficient: 4.
- Term 2: $-4x^2y^2z^2$. Coefficient: -4.
- Term 3: $z^2$. Coefficient: 1.
(iv) 3 – pq + qr – rp:
- Term 1: 3. Coefficient: 3.
- Term 2: $-pq$. Coefficient: -1.
- Term 3: $+qr$. Coefficient: 1.
- Term 4: $-rp$. Coefficient: -1.
(v) $\frac{x}{2}$ + $\frac{y}{2}$ − xy:
We can rewrite the terms as $\frac{1}{2}x$, $\frac{1}{2}y$, and $-1xy$.
- Term 1: $\frac{x}{2}$ or $\frac{1}{2}x$. Coefficient: $\frac{1}{2}$.
- Term 2: $\frac{y}{2}$ or $\frac{1}{2}y$. Coefficient: $\frac{1}{2}$.
- Term 3: $-xy$ or $-1xy$. Coefficient: -1.
(vi) 0.3a – 0.6ab + 0.5b:
- Term 1: $0.3a$. Coefficient: 0.3.
- Term 2: $-0.6ab$. Coefficient: -0.6.
- Term 3: $0.5b$. Coefficient: 0.5.
Question 2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?
x + y
1000
x + x2 + x3 + x4
7 + y + 5x
2y – 3y2
2y – 3y2 + 4y3
5x – 4y + 3xy
4z – 15z2
ab + bc + cd + da
pqr
p2q + pq2
2p + 2q
Answer:
A monomial is a polynomial with one term.
A binomial is a polynomial with two terms.
A trinomial is a polynomial with three terms.
Polynomials with more than three terms do not fit into these three categories.
Let's classify each polynomial based on the number of terms:
- x + y : Has 2 terms (x and y). It is a Binomial.
- 1000 : Has 1 term (1000). It is a Monomial.
- x + x2 + x3 + x4 : Has 4 terms (x, x2, x3, and x4). It does not fit in any of the three categories (monomial, binomial, trinomial).
- 7 + y + 5x : Has 3 terms (7, y, and 5x). It is a Trinomial.
- 2y – 3y2 : Has 2 terms (2y and $-3y^2$). It is a Binomial.
- 2y – 3y2 + 4y3 : Has 3 terms (2y, $-3y^2$, and $4y^3$). It is a Trinomial.
- 5x – 4y + 3xy : Has 3 terms (5x, $-4y$, and 3xy). It is a Trinomial.
- 4z – 15z2 : Has 2 terms (4z and $-15z^2$). It is a Binomial.
- ab + bc + cd + da : Has 4 terms (ab, bc, cd, and da). It does not fit in any of the three categories (monomial, binomial, trinomial).
- pqr : Has 1 term (pqr). It is a Monomial.
- p2q + pq2 : Has 2 terms ($p^2q$ and $pq^2$). It is a Binomial.
- 2p + 2q : Has 2 terms (2p and 2q). It is a Binomial.
Classification:
Monomials:
- 1000
- pqr
Binomials:
- x + y
- 2y – 3y2
- 4z – 15z2
- p2q + pq2
- 2p + 2q
Trinomials:
- 7 + y + 5x
- 2y – 3y2 + 4y3
- 5x – 4y + 3xy
Polynomials that do not fit in any of these three categories:
- x + x2 + x3 + x4
- ab + bc + cd + da
Question 3. Add the following.
(i) ab – bc, bc – ca, ca – ab
(ii) a – b + ab, b – c + bc, c – a + ac
(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2
(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Answer:
To add algebraic expressions, we combine like terms. We can either arrange them vertically or add them horizontally by grouping like terms.
(i) ab – bc, bc – ca, ca – ab
Arrange vertically:
$\begin{array}{rccc} & ab & -bc & \\ & & +bc & -ca \\ & -ab & & +ca \\ \hline \end{array}$
Add the coefficients in each column:
- ab terms: $1ab - 1ab = (1-1)ab = 0ab = 0$
- bc terms: $-1bc + 1bc = (-1+1)bc = 0bc = 0$
- ca terms: $-1ca + 1ca = (-1+1)ca = 0ca = 0$
Sum = $0 + 0 + 0 = 0$.
Alternatively, horizontally:
(ab – bc) + (bc – ca) + (ca – ab)
= ab – bc + bc – ca + ca – ab
= (ab – ab) + (– bc + bc) + (– ca + ca)
= $0 + 0 + 0 = 0$
Sum = 0.
(ii) a – b + ab, b – c + bc, c – a + ac
Arrange vertically:
$\begin{array}{rccccc} & a & -b & +ab & & \\ & & +b & & -c & +bc \\ & -a & & & +c & & +ac \\ \hline \end{array}$
Add the coefficients in each column:
- a terms: $1a - 1a = (1-1)a = 0$
- b terms: $-1b + 1b = (-1+1)b = 0$
- ab terms: $+ab$ (no other ab terms)
- c terms: $-c + c = (-1+1)c = 0$
- bc terms: $+bc$ (no other bc terms)
- ac terms: $+ac$ (no other ac terms)
Sum = $0 + 0 + ab + 0 + bc + ac = ab + bc + ac$.
Alternatively, horizontally:
(a – b + ab) + (b – c + bc) + (c – a + ac)
= a – b + ab + b – c + bc + c – a + ac
= (a – a) + (– b + b) + ab + (– c + c) + bc + ac
= $0 + 0 + ab + 0 + bc + ac$
= $ab + bc + ac$
Sum = ab + bc + ac.
(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2
Arrange vertically (aligning like terms):
$\begin{array}{rccc} & 2p^2q^2 & -3pq & +4 \\ & -3p^2q^2 & +7pq & +5 \\ \hline \end{array}$
Add the coefficients in each column:
- $p^2q^2$ terms: $2p^2q^2 - 3p^2q^2 = (2-3)p^2q^2 = -1p^2q^2 = -p^2q^2$
- pq terms: $-3pq + 7pq = (-3+7)pq = 4pq$
- Constant terms: $+4 + 5 = 9$
Sum = $-p^2q^2 + 4pq + 9$.
Alternatively, horizontally:
(2p2q2 – 3pq + 4) + (5 + 7pq – 3p2q2)
= 2p2q2 – 3pq + 4 + 5 + 7pq – 3p2q2
= (2p2q2 – 3p2q2) + (–3pq + 7pq) + (4 + 5)
= $(2 - 3)p^2q^2 + (-3 + 7)pq + (4 + 5)$
= $-p^2q^2 + 4pq + 9$
Sum = $-p^2q^2 + 4pq + 9$.
(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Arrange vertically:
$\begin{array}{rccccc} & l^2 & +m^2 & & & & \\ & & +m^2 & +n^2 & & & \\ & +l^2 & & +n^2 & & & \\ & & & & +2lm & +2mn & +2nl \\ \hline \end{array}$
Add the coefficients in each column:
- $l^2$ terms: $1l^2 + 1l^2 = (1+1)l^2 = 2l^2$
- $m^2$ terms: $1m^2 + 1m^2 = (1+1)m^2 = 2m^2$
- $n^2$ terms: $1n^2 + 1n^2 = (1+1)n^2 = 2n^2$
- lm terms: $+2lm$ (no other lm terms)
- mn terms: $+2mn$ (no other mn terms)
- nl terms: $+2nl$ (no other nl terms)
Sum = $2l^2 + 2m^2 + 2n^2 + 2lm + 2mn + 2nl$.
Alternatively, horizontally:
(l2 + m2) + (m2 + n2) + (n2 + l2) + (2lm + 2mn + 2nl)
= l2 + m2 + m2 + n2 + n2 + l2 + 2lm + 2mn + 2nl
= (l2 + l2) + (m2 + m2) + (n2 + n2) + 2lm + 2mn + 2nl
= $(1 + 1)l^2 + (1 + 1)m^2 + (1 + 1)n^2 + 2lm + 2mn + 2nl$
= $2l^2 + 2m^2 + 2n^2 + 2lm + 2mn + 2nl$
This expression can also be written as $2(l^2 + m^2 + n^2 + lm + mn + nl)$.
Sum = $2l^2 + 2m^2 + 2n^2 + 2lm + 2mn + 2nl$.
Question 4.
(a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3
(b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz
(c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q
Answer:
To subtract one algebraic expression from another, we add the additive inverse of the expression being subtracted to the other expression. To find the additive inverse, we change the sign of each term in the expression being subtracted.
(a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3
Expression to be subtracted: $4a – 7ab + 3b + 12$
Additive inverse: $-(4a – 7ab + 3b + 12) = -4a + 7ab - 3b - 12$
Expression from which we subtract: $12a – 9ab + 5b – 3$
Add the second expression and the additive inverse of the first expression vertically, aligning like terms:
$\begin{array}{rcccc} & 12a & -9ab & +5b & -3 \\ + & -4a & +7ab & -3b & -12 \\ \hline \end{array}$
Add the coefficients in each column:
- a terms: $12a - 4a = (12-4)a = 8a$
- ab terms: $-9ab + 7ab = (-9+7)ab = -2ab$
- b terms: $+5b - 3b = (5-3)b = 2b$
- Constant terms: $-3 - 12 = -15$
Result = $8a - 2ab + 2b - 15$.
Alternatively, horizontally:
(12a – 9ab + 5b – 3) – (4a – 7ab + 3b + 12)
= 12a – 9ab + 5b – 3 – 4a + 7ab – 3b – 12
= (12a – 4a) + (– 9ab + 7ab) + (5b – 3b) + (– 3 – 12)
= $(12-4)a + (-9+7)ab + (5-3)b + (-3-12)$
= $8a - 2ab + 2b - 15$
Result = $8a - 2ab + 2b - 15$.
(b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz
Expression to be subtracted: $3xy + 5yz – 7zx$
Additive inverse: $-(3xy + 5yz – 7zx) = -3xy - 5yz + 7zx$
Expression from which we subtract: $5xy – 2yz – 2zx + 10xyz$
Add the second expression and the additive inverse of the first expression vertically, aligning like terms:
$\begin{array}{rccccc} & 5xy & -2yz & -2zx & +10xyz \\ + & -3xy & -5yz & +7zx & & \\ \hline \end{array}$
Add the coefficients in each column:
- xy terms: $5xy - 3xy = (5-3)xy = 2xy$
- yz terms: $-2yz - 5yz = (-2-5)yz = -7yz$
- zx terms: $-2zx + 7zx = (-2+7)zx = 5zx$
- xyz terms: $+10xyz$ (no other xyz terms)
Result = $2xy - 7yz + 5zx + 10xyz$.
Alternatively, horizontally:
(5xy – 2yz – 2zx + 10xyz) – (3xy + 5yz – 7zx)
= 5xy – 2yz – 2zx + 10xyz – 3xy – 5yz + 7zx
= (5xy – 3xy) + (– 2yz – 5yz) + (– 2zx + 7zx) + 10xyz
= $(5-3)xy + (-2-5)yz + (-2+7)zx + 10xyz$
= $2xy - 7yz + 5zx + 10xyz$
Result = $2xy - 7yz + 5zx + 10xyz$.
(c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q
Expression to be subtracted: $4p^2q – 3pq + 5pq^2 – 8p + 7q – 10$
Additive inverse: $-(4p^2q – 3pq + 5pq^2 – 8p + 7q – 10) = -4p^2q + 3pq - 5pq^2 + 8p - 7q + 10$
Expression from which we subtract: $18 – 3p – 11q + 5pq – 2pq^2 + 5p^2q$
Arrange the terms vertically, aligning like terms, and then add them:
$\begin{array}{rcccccccc} & 5p^2q & -2pq^2 & +5pq & -3p & -11q & +18 \\ + & -4p^2q & -5pq^2 & +3pq & +8p & -7q & +10 \\ \hline \end{array}$
Add the coefficients in each column:
- $p^2q$ terms: $5p^2q - 4p^2q = (5-4)p^2q = 1p^2q = p^2q$
- $pq^2$ terms: $-2pq^2 - 5pq^2 = (-2-5)pq^2 = -7pq^2$
- pq terms: $+5pq + 3pq = (5+3)pq = 8pq$
- p terms: $-3p + 8p = (-3+8)p = 5p$
- q terms: $-11q - 7q = (-11-7)q = -18q$
- Constant terms: $+18 + 10 = 28$
Result = $p^2q - 7pq^2 + 8pq + 5p - 18q + 28$.
Alternatively, horizontally:
(18 – 3p – 11q + 5pq – 2pq2 + 5p2q) – (4p2q – 3pq + 5pq2 – 8p + 7q – 10)
= 18 – 3p – 11q + 5pq – 2pq2 + 5p2q – 4p2q + 3pq – 5pq2 + 8p – 7q + 10
Group like terms together:
= (5p2q – 4p2q) + (– 2pq2 – 5pq2) + (5pq + 3pq) + (– 3p + 8p) + (– 11q – 7q) + (18 + 10)
= $(5-4)p^2q + (-2-5)pq^2 + (5+3)pq + (-3+8)p + (-11-7)q \ $$ + (18+10)$
= $p^2q - 7pq^2 + 8pq + 5p - 18q + 28$
Result = $p^2q - 7pq^2 + 8pq + 5p - 18q + 28$.
Example 3 & 4 (Before Exercise 9.2)
Example 3: Complete the table for area of a rectangle with given length and breadth.
Length | Breadth | Area |
---|---|---|
$3x$ | $5y$ | $3x \times 5y = 15xy$ |
$9y$ | $4y^2$ | ....... |
$4ab$ | $5bc$ | ....... |
$2l^2m$ | $3lm^2$ | ....... |
Answer:
Solution:
The area of a rectangle is calculated by the formula:
Area = Length × Breadth
We will calculate the area for each row by multiplying the given monomials for length and breadth.
For the second row:
Length = $9y$
Breadth = $4y^2$
Area = $(9y) \times (4y^2)$
$\implies (9 \times 4) \times (y \times y^2) = 36 \times y^{1+2} = 36y^3$
For the third row:
Length = $4ab$
Breadth = $5bc$
Area = $(4ab) \times (5bc)$
$\implies (4 \times 5) \times (a \times b \times b \times c) = 20 \times ab^2c = 20ab^2c$
For the fourth row:
Length = $2l^2m$
Breadth = $3lm^2$
Area = $(2l^2m) \times (3lm^2)$
$\implies (2 \times 3) \times (l^2 \times l \times m \times m^2) = 6 \times l^{2+1}m^{1+2} = 6l^3m^3$
The completed table is as follows:
Length | Breadth | Area |
$3x$ | $5y$ | $15xy$ |
$9y$ | $4y^2$ | $36y^3$ |
$4ab$ | $5bc$ | $20ab^2c$ |
$2l^2m$ | $3lm^2$ | $6l^3m^3$ |
Example 4: Find the volume of each rectangular box with given length, breadth and height.
S.No. | Length | Breadth | Height |
---|---|---|---|
(i) | $2ax$ | $3by$ | $5cz$ |
(ii) | $m^2n$ | $n^2p$ | $p^2m$ |
(iii) | $2q$ | $4q^2$ | $8q^3$ |
Answer:
Solution:
The volume of a rectangular box (cuboid) is given by the formula:
Volume = Length × Breadth × Height
We will find the volume for each case by multiplying the three given monomials.
(i) Length = $2ax$, Breadth = $3by$, Height = $5cz$
Volume = $(2ax) \times (3by) \times (5cz)$
$\implies (2 \times 3 \times 5) \times (a \times x \times b \times y \times c \times z)$
$\implies 30 \times (abcxyz)$
$\implies 30abcxyz$
The volume of the box is $30abcxyz$.
(ii) Length = $m^2n$, Breadth = $n^2p$, Height = $p^2m$
Volume = $(m^2n) \times (n^2p) \times (p^2m)$
$\implies (m^2 \times m) \times (n \times n^2) \times (p \times p^2)$
$\implies m^{2+1} \times n^{1+2} \times p^{1+2}$
$\implies m^3n^3p^3$
The volume of the box is $m^3n^3p^3$.
(iii) Length = $2q$, Breadth = $4q^2$, Height = $8q^3$
Volume = $(2q) \times (4q^2) \times (8q^3)$
$\implies (2 \times 4 \times 8) \times (q \times q^2 \times q^3)$
$\implies 64 \times q^{1+2+3}$
$\implies 64q^6$
The volume of the box is $64q^6$.
Exercise 9.2
Question 1. Find the product of the following pairs of monomials.
(i) 4, 7p
(ii) – 4p, 7p
(iii) – 4p, 7pq
(iv) 4p3, – 3p
(v) 4p, 0
Answer:
To find the product of monomials, multiply the coefficients together and multiply the variable parts together. Remember the exponent rule $a^m \times a^n = a^{m+n}$.
(i) 4, 7p:
Product = $4 \times 7p$
... (i)
Product = $(4 \times 7) \times p = 28p$
[From (i)]
Product = $28p$.
(ii) – 4p, 7p:
Product = $(-4p) \times (7p)$
... (ii)
Product = $(-4 \times 7) \times (p \times p)$
Product = $-28 \times p^{1+1} = -28p^2$
[Using exponent rule]
Product = $-28p^2$.
(iii) – 4p, 7pq:
Product = $(-4p) \times (7pq)$
... (iii)
Product = $(-4 \times 7) \times (p \times pq)$
Product = $-28 \times (p^{1+1} \times q) = -28p^2q$
Product = $-28p^2q$.
(iv) 4p3, – 3p:
Product = $(4p^3) \times (-3p)$
... (iv)
Product = $(4 \times -3) \times (p^3 \times p)$
Product = $-12 \times p^{3+1} = -12p^4$
Product = $-12p^4$.
(v) 4p, 0:
Product = $4p \times 0$
... (v)
Any number multiplied by 0 is 0.
Product = 0
Product = 0.
Question 2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
(p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)
Answer:
The area of a rectangle is given by the formula: Area = Length $\times$ Breadth.
We need to multiply the given pairs of monomials.
(p, q):
Length = p, Breadth = q
Area = $p \times q = pq$
Area = $pq$.
(10m, 5n):
Length = 10m, Breadth = 5n
Area = $10m \times 5n = (10 \times 5) \times (m \times n) = 50mn$
Area = $50mn$.
(20x2, 5y2):
Length = $20x^2$, Breadth = $5y^2$
Area = $20x^2 \times 5y^2 = (20 \times 5) \times (x^2 \times y^2) = 100x^2y^2$
Area = $100x^2y^2$.
(4x, 3x2):
Length = 4x, Breadth = $3x^2$
Area = $4x \times 3x^2 = (4 \times 3) \times (x \times x^2) = 12x^{1+2} = 12x^3$
Area = $12x^3$.
(3mn, 4np):
Length = 3mn, Breadth = 4np
Area = $3mn \times 4np = (3 \times 4) \times (m \times n \times n \times p) = 12m n^{1+1} p = 12mn^2p$
Area = $12mn^2p$.
Here is a summary of the areas:
- For (p, q): Area = $pq$
- For (10m, 5n): Area = $50mn$
- For (20x2, 5y2): Area = $100x^2y^2$
- For (4x, 3x2): Area = $12x^3$
- For (3mn, 4np): Area = $12mn^2p$
Question 3. Complete the table of products.
First Monomial $\rightarrow$ Second Monomial $\downarrow$ |
$2x$ | $-5y$ | $3x^2$ | $-4xy$ | $7x^2y$ | $-9x^2y^2$ |
---|---|---|---|---|---|---|
$2x$ | $4x^2$ | ... | ... | ... | ... | ... |
$-5y$ | ... | ... | $-15x^2y$ | ... | ... | ... |
$3x^2$ | ... | ... | ... | ... | ... | ... |
$-4xy$ | ... | ... | ... | ... | ... | ... |
$7x^2y$ | ... | ... | ... | ... | ... | ... |
$-9x^2y^2$ | ... | ... | ... | ... | ... | ... |
Answer:
To complete the table, we need to find the product of the monomial in the first column (Second Monomial) and the monomial in the first row (First Monomial). The product goes into the cell at their intersection.
Remember to multiply the coefficients and combine the variable terms using the rule $a^m \times a^n = a^{m+n}$.
Here is the completed table of products:
First Monomial $\rightarrow$ Second Monomial $\downarrow$ |
$2x$ | $-5y$ | $3x^2$ | $-4xy$ | $7x^2y$ | $-9x^2y^2$ |
$2x$ | $4x^2$ | $-10xy$ | $6x^3$ | $-8x^2y$ | $14x^3y$ | $-18x^3y^2$ |
$-5y$ | $-10xy$ | $25y^2$ | $-15x^2y$ | $20xy^2$ | $-35x^2y^2$ | $45x^2y^3$ |
$3x^2$ | $6x^3$ | $-15x^2y$ | $9x^4$ | $-12x^3y$ | $21x^4y$ | $-27x^4y^2$ |
$-4xy$ | $-8x^2y$ | $20xy^2$ | $-12x^3y$ | $16x^2y^2$ | $-28x^3y^2$ | $36x^3y^3$ |
$7x^2y$ | $14x^3y$ | $-35x^2y^2$ | $21x^4y$ | $-28x^3y^2$ | $49x^4y^2$ | $-63x^4y^3$ |
$-9x^2y^2$ | $-18x^3y^2$ | $45x^2y^3$ | $-27x^4y^2$ | $36x^3y^3$ | $-63x^4y^3$ | $81x^4y^4$ |
Question 4. Obtain the volume of rectangular boxes with the following length, breadth and heightrespectively.
(i) 5a, 3a2, 7a4
(ii) 2p, 4q, 8r
(iii) xy, 2x2y, 2xy2
(iv) a, 2b, 3c
Answer:
Solution:
The volume of a rectangular box is given by the formula:
Volume = Length × Breadth × Height
We will calculate the volume for each case by multiplying the given expressions for length, breadth, and height.
(i) Length = $5a$, Breadth = $3a^2$, Height = $7a^4$
Volume = $(5a) \times (3a^2) \times (7a^4)$
First, we multiply the coefficients:
$5 \times 3 \times 7 = 105$
Next, we multiply the variables:
$a \times a^2 \times a^4 = a^{1+2+4} = a^7$
Combining them, we get:
Volume = $105a^7$
The volume of the rectangular box is $105a^7$.
(ii) Length = $2p$, Breadth = $4q$, Height = $8r$
Volume = $(2p) \times (4q) \times (8r)$
Multiplying the coefficients:
$2 \times 4 \times 8 = 64$
Multiplying the variables:
$p \times q \times r = pqr$
Combining them, we get:
Volume = $64pqr$
The volume of the rectangular box is $64pqr$.
(iii) Length = $xy$, Breadth = $2x^2y$, Height = $2xy^2$
Volume = $(xy) \times (2x^2y) \times (2xy^2)$
Multiplying the coefficients:
$1 \times 2 \times 2 = 4$
Multiplying the variables (grouping like variables):
$(x \times x^2 \times x) \times (y \times y \times y^2) = (x^{1+2+1}) \times (y^{1+1+2}) = x^4y^4$
Combining them, we get:
Volume = $4x^4y^4$
The volume of the rectangular box is $4x^4y^4$.
(iv) Length = $a$, Breadth = $2b$, Height = $3c$
Volume = $(a) \times (2b) \times (3c)$
Multiplying the coefficients:
$1 \times 2 \times 3 = 6$
Multiplying the variables:
$a \times b \times c = abc$
Combining them, we get:
Volume = $6abc$
The volume of the rectangular box is $6abc$.
Question 5. Obtain the product of
(i) xy, yz, zx
(ii) a, – a2, a3
(iii) 2, 4y, 8y2, 16y3
(iv) a, 2b, 3c, 6abc
(v) m, – mn, mnp
Answer:
To find the product of the given monomials, we multiply their coefficients and their variable parts separately.
(i) xy, yz, zx
Product = $(xy) \times (yz) \times (zx)$
We rearrange the variables to group the like ones together:
Product = $(x \times x) \times (y \times y) \times (z \times z)$
Using the rule of exponents, $a^m \times a^n = a^{m+n}$:
Product = $x^{1+1} \times y^{1+1} \times z^{1+1}$
Product = $x^2y^2z^2$
The product is $x^2y^2z^2$.
(ii) a, – a2, a3
Product = $(a) \times (–a^2) \times (a^3)$
First, we determine the sign of the product. Since there is one negative term, the result will be negative.
Product = $-(a \times a^2 \times a^3)$
Now, we add the powers of the variable 'a':
Product = $- (a^{1+2+3})$
Product = $-a^6$
The product is $-a^6$.
(iii) 2, 4y, 8y2, 16y3
Product = $(2) \times (4y) \times (8y^2) \times (16y^3)$
First, we multiply the numerical coefficients:
$2 \times 4 \times 8 \times 16 = 8 \times 8 \times 16 = 64 \times 16 = 1024$
Next, we multiply the variable parts:
$y \times y^2 \times y^3 = y^{1+2+3} = y^6$
Combining the results:
Product = $1024y^6$
The product is $1024y^6$.
(iv) a, 2b, 3c, 6abc
Product = $(a) \times (2b) \times (3c) \times (6abc)$
First, we multiply the coefficients:
$1 \times 2 \times 3 \times 6 = 36$
Next, we multiply the variables, grouping like variables together:
$(a \times a) \times (b \times b) \times (c \times c) = a^2 \times b^2 \times c^2 = a^2b^2c^2$
Combining the results:
Product = $36a^2b^2c^2$
The product is $36a^2b^2c^2$.
(v) m, – mn, mnp
Product = $(m) \times (–mn) \times (mnp)$
First, we determine the sign. Since there is one negative term, the product is negative.
Product = $- (m \times mn \times mnp)$
Now, we group the like variables:
Product = $-((m \times m \times m) \times (n \times n) \times (p))$
Adding the powers of the variables:
Product = $-(m^{1+1+1} \times n^{1+1} \times p^1)$
Product = $-m^3n^2p$
The product is $-m^3n^2p$.
Example 5 to 7 (Before Exercise 9.3)
Example 5: Simplify the expressions and evaluate them as directed:
(i) x (x – 3) + 2 for x = 1,
(ii) 3y (2y – 7) – 3 (y – 4) – 63 for y = –2
Answer:
(i) x (x – 3) + 2 for x = 1
Step 1: Simplify the expression
First, we distribute $x$ over the term $(x-3)$:
$x(x-3) + 2 = (x \times x) - (x \times 3) + 2$
$= x^2 - 3x + 2$
The simplified expression is $x^2 - 3x + 2$.
Step 2: Evaluate the simplified expression for x = 1
Now, we substitute $x = 1$ into the simplified expression:
$(1)^2 - 3(1) + 2$
$= 1 - 3 + 2$
$= 3 - 3 = 0$
The value of the expression is 0.
(ii) 3y (2y – 7) – 3 (y – 4) – 63 for y = –2
Step 1: Simplify the expression
We use the distributive property for both parts of the expression:
$3y(2y-7) - 3(y-4) - 63$
$= (3y \times 2y - 3y \times 7) - (3 \times y - 3 \times 4) - 63$
$= (6y^2 - 21y) - (3y - 12) - 63$
Now, we remove the brackets. Remember to change the signs of the terms in the second bracket.
$= 6y^2 - 21y - 3y + 12 - 63$
Group and combine the like terms:
$= 6y^2 + (-21y - 3y) + (12 - 63)$
$= 6y^2 - 24y - 51$
The simplified expression is $6y^2 - 24y - 51$.
Step 2: Evaluate the simplified expression for y = –2
Substitute $y = -2$ into the simplified expression:
$6(-2)^2 - 24(-2) - 51$
$= 6(4) - (-48) - 51$
$= 24 + 48 - 51$
$= 72 - 51 = 21$
The value of the expression is 21.
Example 6: Add
(i) 5m (3 – m) and 6m2 – 13m
(ii) 4y (3y2 + 5y – 7) and 2 (y3 – 4y2 + 5)
Answer:
(i) Add 5m (3 – m) and 6m2 – 13m
Step 1: Simplify the first expression
We simplify $5m(3-m)$ by using the distributive property:
$5m(3-m) = (5m \times 3) - (5m \times m) = 15m - 5m^2$
Step 2: Add the simplified expression to the second expression
We need to add $(15m - 5m^2)$ and $(6m^2 - 13m)$.
$(15m - 5m^2) + (6m^2 - 13m)$
Group the like terms together:
$(-5m^2 + 6m^2) + (15m - 13m)$
Combine the like terms:
$m^2 + 2m$
The sum is $m^2 + 2m$.
(ii) Add 4y (3y2 + 5y – 7) and 2 (y3 – 4y2 + 5)
Step 1: Simplify both expressions
First expression: $4y(3y^2 + 5y - 7)$
$= (4y \times 3y^2) + (4y \times 5y) - (4y \times 7)$
$= 12y^3 + 20y^2 - 28y$
Second expression: $2(y^3 - 4y^2 + 5)$
$= (2 \times y^3) - (2 \times 4y^2) + (2 \times 5)$
$= 2y^3 - 8y^2 + 10$
Step 2: Add the two simplified expressions
We need to add $(12y^3 + 20y^2 - 28y)$ and $(2y^3 - 8y^2 + 10)$.
$(12y^3 + 20y^2 - 28y) + (2y^3 - 8y^2 + 10)$
Group the like terms together:
$(12y^3 + 2y^3) + (20y^2 - 8y^2) - 28y + 10$
Combine the like terms:
$14y^3 + 12y^2 - 28y + 10$
The sum is $14y^3 + 12y^2 - 28y + 10$.
Example 7: Subtract 3pq (p – q) from 2pq (p + q).
Answer:
Solution:
We need to calculate: $2pq(p+q) - 3pq(p-q)$
Step 1: Simplify both expressions
First expression: $2pq(p+q)$
$= (2pq \times p) + (2pq \times q)$
$= 2p^2q + 2pq^2$
Second expression: $3pq(p-q)$
$= (3pq \times p) - (3pq \times q)$
$= 3p^2q - 3pq^2$
Step 2: Perform the subtraction
We subtract the simplified second expression from the simplified first expression:
$(2p^2q + 2pq^2) - (3p^2q - 3pq^2)$
Remove the bracket, changing the sign of each term inside it:
$2p^2q + 2pq^2 - 3p^2q + 3pq^2$
Group the like terms together:
$(2p^2q - 3p^2q) + (2pq^2 + 3pq^2)$
Combine the like terms:
$-p^2q + 5pq^2$
Final Answer:
The result of the subtraction is $-p^2q + 5pq^2$ or $5pq^2 - p^2q$.
Exercise 9.3
Question 1. Carry out the multiplication of the expressions in each of the following pairs.
(i) 4p, q + r
(ii) ab, a – b
(iii) a + b, 7a2b2
(iv) a2 – 9, 4a
(v) pq + qr + rp, 0
Answer:
To carry out the multiplication of a monomial with a polynomial, we use the distributive property, which states that $a(b+c) = ab + ac$. We multiply the monomial with each term of the polynomial.
(i) 4p, q + r
We need to multiply the monomial $4p$ with the binomial $(q+r)$.
Product = $4p \times (q+r)$
Using the distributive property:
Product = $(4p \times q) + (4p \times r)$
Product = $4pq + 4pr$
The product is $4pq + 4pr$.
(ii) ab, a – b
We need to multiply the monomial $ab$ with the binomial $(a-b)$.
Product = $ab \times (a-b)$
Using the distributive property:
Product = $(ab \times a) - (ab \times b)$
Product = $a^2b - ab^2$
The product is $a^2b - ab^2$.
(iii) a + b, 7a2b2
We need to multiply the binomial $(a+b)$ with the monomial $7a^2b^2$.
Product = $(a+b) \times (7a^2b^2)$
Using the distributive property:
Product = $(a \times 7a^2b^2) + (b \times 7a^2b^2)$
Product = $7a^3b^2 + 7a^2b^3$
The product is $7a^3b^2 + 7a^2b^3$.
(iv) a2 – 9, 4a
We need to multiply the binomial $(a^2 - 9)$ with the monomial $4a$.
Product = $(a^2 - 9) \times (4a)$
Using the distributive property:
Product = $(a^2 \times 4a) - (9 \times 4a)$
Product = $4a^3 - 36a$
The product is $4a^3 - 36a$.
(v) pq + qr + rp, 0
We need to multiply the trinomial $(pq + qr + rp)$ with the monomial $0$.
Product = $(pq + qr + rp) \times 0$
According to the zero property of multiplication, any expression multiplied by zero results in zero.
Product = $0$
The product is $0$.
Question 2. Complete the table.
S.No. | First expression | Second expression | Product |
---|---|---|---|
(i) | $a$ | $b + c + d$ | ... |
(ii) | $x + y – 5$ | $5xy$ | ... |
(iii) | $p$ | $6p^2 – 7p + 5$ | ... |
(iv) | $4p^2q^2$ | $p^2 – q^2$ | ... |
(v) | $a + b + c$ | $abc$ | ... |
Answer:
To complete the table, we need to find the product of the first and second expressions for each row. This involves multiplying a monomial by a polynomial, for which we use the distributive property.
(i) First expression: $a$, Second expression: $b + c + d$
Product = $a \times (b + c + d)$
Applying the distributive property:
Product = $(a \times b) + (a \times c) + (a \times d)$
Product = $ab + ac + ad$
(ii) First expression: $x + y – 5$, Second expression: $5xy$
Product = $(x + y - 5) \times (5xy)$
Applying the distributive property:
Product = $(x \times 5xy) + (y \times 5xy) - (5 \times 5xy)$
Product = $5x^2y + 5xy^2 - 25xy$
(iii) First expression: $p$, Second expression: $6p^2 – 7p + 5$
Product = $p \times (6p^2 - 7p + 5)$
Applying the distributive property:
Product = $(p \times 6p^2) - (p \times 7p) + (p \times 5)$
Product = $6p^3 - 7p^2 + 5p$
(iv) First expression: $4p^2q^2$, Second expression: $p^2 – q^2$
Product = $4p^2q^2 \times (p^2 - q^2)$
Applying the distributive property:
Product = $(4p^2q^2 \times p^2) - (4p^2q^2 \times q^2)$
Product = $4p^4q^2 - 4p^2q^4$
(v) First expression: $a + b + c$, Second expression: $abc$
Product = $(a + b + c) \times (abc)$
Applying the distributive property:
Product = $(a \times abc) + (b \times abc) + (c \times abc)$
Product = $a^2bc + ab^2c + abc^2$
Completed Table:
S.No. | First expression | Second expression | Product |
(i) | $a$ | $b + c + d$ | $ab + ac + ad$ |
(ii) | $x + y – 5$ | $5xy$ | $5x^2y + 5xy^2 - 25xy$ |
(iii) | $p$ | $6p^2 – 7p + 5$ | $6p^3 - 7p^2 + 5p$ |
(iv) | $4p^2q^2$ | $p^2 – q^2$ | $4p^4q^2 - 4p^2q^4$ |
(v) | $a + b + c$ | $abc$ | $a^2bc + ab^2c + abc^2$ |
Question 3. Find the product.
(i) (a2) × (2a22) × (4a26)
(ii) $\left( \frac{2}{3}xy \right)\times\left( \frac{-9}{10}x^2y^2 \right)$
(iii) $\left( -\frac{10}{3}pq^3 \right)\times\left( \frac{6}{5}p^3q \right)$
(iv) x × x2 × x3 × x4
Answer:
To find the product of monomials, we multiply their numerical coefficients and then multiply their variable parts. When multiplying variables with the same base, we add their exponents ($a^m \times a^n = a^{m+n}$).
(i) (a2) × (2a22) × (4a26)
Product = $(1 \times 2 \times 4) \times (a^2 \times a^{22} \times a^{26})$
Multiply the coefficients:
$1 \times 2 \times 4 = 8$
Multiply the variable parts by adding the exponents:
$a^{2 + 22 + 26} = a^{50}$
So, the product is $8a^{50}$.
(ii) $\left( \frac{2}{3}xy \right)\times\left( \frac{-9}{10}x^2y^2 \right)$
Product = $\left( \frac{2}{3} \times \frac{-9}{10} \right) \times (x \times x^2) \times (y \times y^2)$
Multiply the coefficients:
$\frac{2}{3} \times \frac{-9}{10} = \frac{\cancel{2}^1}{\cancel{3}_1} \times \frac{\cancel{-9}^{-3}}{\cancel{10}_5} = \frac{1 \times -3}{1 \times 5} = -\frac{3}{5}$
Multiply the variable parts by adding the exponents:
$(x^{1+2}) \times (y^{1+2}) = x^3y^3$
So, the product is $-\frac{3}{5}x^3y^3$.
(iii) $\left( -\frac{10}{3}pq^3 \right)\times\left( \frac{6}{5}p^3q \right)$
Product = $\left( -\frac{10}{3} \times \frac{6}{5} \right) \times (p \times p^3) \times (q^3 \times q)$
Multiply the coefficients:
$-\frac{10}{3} \times \frac{6}{5} = -\frac{\cancel{10}^2}{\cancel{3}_1} \times \frac{\cancel{6}^2}{\cancel{5}_1} = -(2 \times 2) = -4$
Multiply the variable parts by adding the exponents:
$(p^{1+3}) \times (q^{3+1}) = p^4q^4$
So, the product is $-4p^4q^4$.
(iv) x × x2 × x3 × x4
Product = $x^1 \times x^2 \times x^3 \times x^4$
The coefficient is 1. We multiply the variable parts by adding the exponents:
Product = $x^{1+2+3+4}$
Product = $x^{10}$
So, the product is $x^{10}$.
Question 4.
(a) Simplify 3x (4x – 5) + 3 and find its values for
(i) x = 3
(ii) x = $\frac{1}{2}$
(b) Simplify a (a2 + a + 1) + 5 and find its value for
(i) a = 0,
(ii) a = 1
(iii) a = – 1.
Answer:
(a) Simplify 3x (4x – 5) + 3 and find its values
Step 1: Simplify the expression
We use the distributive property to multiply $3x$ with each term inside the bracket $(4x - 5)$.
$3x (4x – 5) + 3 = (3x \times 4x) - (3x \times 5) + 3$
$= 12x^2 - 15x + 3$
The simplified expression is $12x^2 - 15x + 3$.
Step 2: Find the values for the given values of x
(i) For x = 3
We substitute $x = 3$ into the simplified expression:
$12(3)^2 - 15(3) + 3$
$= 12(9) - 45 + 3$
$= 108 - 45 + 3$
$= 63 + 3 = 66$
The value of the expression is 66.
(ii) For x = $\frac{1}{2}$
We substitute $x = \frac{1}{2}$ into the simplified expression:
$12\left(\frac{1}{2}\right)^2 - 15\left(\frac{1}{2}\right) + 3$
$= 12\left(\frac{1}{4}\right) - \frac{15}{2} + 3$
$= \frac{12}{4} - \frac{15}{2} + 3$
$= 3 - \frac{15}{2} + 3$
$= 6 - \frac{15}{2}$
$= \frac{12}{2} - \frac{15}{2} = \frac{12-15}{2} = -\frac{3}{2}$
The value of the expression is $-\frac{3}{2}$.
(b) Simplify a (a2 + a + 1) + 5 and find its value
Step 1: Simplify the expression
We use the distributive property to multiply $a$ with each term inside the bracket $(a^2 + a + 1)$.
$a (a^2 + a + 1) + 5 = (a \times a^2) + (a \times a) + (a \times 1) + 5$
$= a^3 + a^2 + a + 5$
The simplified expression is $a^3 + a^2 + a + 5$.
Step 2: Find the values for the given values of a
(i) For a = 0
Substitute $a=0$ into the simplified expression:
$(0)^3 + (0)^2 + (0) + 5$
$= 0 + 0 + 0 + 5 = 5$
The value of the expression is 5.
(ii) For a = 1
Substitute $a=1$ into the simplified expression:
$(1)^3 + (1)^2 + (1) + 5$
$= 1 + 1 + 1 + 5 = 8$
The value of the expression is 8.
(iii) For a = – 1
Substitute $a=-1$ into the simplified expression:
$(-1)^3 + (-1)^2 + (-1) + 5$
$= -1 + 1 - 1 + 5$
$= 0 - 1 + 5 = 4$
The value of the expression is 4.
Question 5.
(a) Add: p ( p – q), q ( q – r) and r ( r – p)
(b) Add: 2x (z – x – y) and 2y (z – y – x)
(c) Subtract: 3l (l – 4m + 5n) from 4l (10n – 3m + 2l)
(d) Subtract: 3a (a + b + c) – 2b (a – b + c) from 4c (– a + b + c )
Answer:
(a) Add: p ( p – q), q ( q – r) and r ( r – p)
Step 1: Simplify each expression using the distributive property.
First expression: $p(p-q) = p \times p - p \times q = p^2 - pq$
Second expression: $q(q-r) = q \times q - q \times r = q^2 - qr$
Third expression: $r(r-p) = r \times r - r \times p = r^2 - rp$
Step 2: Add the simplified expressions.
We need to find the sum: $(p^2 - pq) + (q^2 - qr) + (r^2 - rp)$
Removing the brackets and rearranging the terms:
$p^2 + q^2 + r^2 - pq - qr - rp$
Since there are no like terms to combine, this is the final answer.
The sum is $p^2 + q^2 + r^2 - pq - qr - rp$.
(b) Add: 2x (z – x – y) and 2y (z – y – x)
Step 1: Simplify each expression.
First expression: $2x(z - x - y) = (2x \times z) - (2x \times x) - (2x \times y) \ $$ = 2xz - 2x^2 - 2xy$
Second expression: $2y(z - y - x) = (2y \times z) - (2y \times y) - (2y \times x) \ $$ = 2yz - 2y^2 - 2xy$
Step 2: Add the simplified expressions.
$(2xz - 2x^2 - 2xy) + (2yz - 2y^2 - 2xy)$
Group the like terms together:
$-2x^2 - 2y^2 + (-2xy - 2xy) + 2yz + 2xz$
Combine the like terms:
$-2x^2 - 2y^2 - 4xy + 2yz + 2xz$
The sum is $-2x^2 - 2y^2 - 4xy + 2yz + 2xz$.
(c) Subtract: 3l (l – 4m + 5n) from 4l (10n – 3m + 2l)
Step 1: Simplify both expressions.
Expression to be subtracted: $3l(l - 4m + 5n) = 3l^2 - 12lm + 15ln$
Expression to subtract from: $4l(10n - 3m + 2l) = 40ln - 12lm + 8l^2$
Step 2: Perform the subtraction.
$(40ln - 12lm + 8l^2) - (3l^2 - 12lm + 15ln)$
Remove the brackets, changing the signs of the second expression:
$40ln - 12lm + 8l^2 - 3l^2 + 12lm - 15ln$
Group and combine like terms:
$(8l^2 - 3l^2) + (-12lm + 12lm) + (40ln - 15ln)$
$5l^2 + 0 + 25ln$
$5l^2 + 25ln$
The result is $5l^2 + 25ln$.
(d) Subtract: 3a (a + b + c) – 2b (a – b + c) from 4c (– a + b + c )
Step 1: Simplify both expressions.
Expression to be subtracted:
$3a(a+b+c) - 2b(a-b+c)$
$= (3a^2 + 3ab + 3ac) - (2ab - 2b^2 + 2bc)$
$= 3a^2 + 3ab + 3ac - 2ab + 2b^2 - 2bc$
$= 3a^2 + (3ab - 2ab) + 2b^2 + 3ac - 2bc$
$= 3a^2 + ab + 2b^2 + 3ac - 2bc$
Expression to subtract from:
$4c(-a + b + c) = -4ac + 4bc + 4c^2$
Step 2: Perform the subtraction.
$(-4ac + 4bc + 4c^2) - (3a^2 + ab + 2b^2 + 3ac - 2bc)$
Remove the brackets, changing the signs of the second expression:
$-4ac + 4bc + 4c^2 - 3a^2 - ab - 2b^2 - 3ac + 2bc$
Group and combine like terms:
$-3a^2 - 2b^2 + 4c^2 - ab + (4bc + 2bc) + (-4ac - 3ac)$
$-3a^2 - 2b^2 + 4c^2 - ab + 6bc - 7ac$
The result is $-3a^2 - 2b^2 + 4c^2 - ab + 6bc - 7ac$.
Example 8 to 10 (Before Exercise 9.4)
Example 8: Multiply
(i) (x – 4) and (2x + 3)
(ii) (x – y) and (3x + 5y)
Answer:
To multiply two binomials, we can use the distributive property. Each term of the first binomial is multiplied by each term of the second binomial. This is often remembered by the acronym FOIL (First, Outer, Inner, Last).
(i) (x – 4) and (2x + 3)
Product = $(x - 4)(2x + 3)$
Using the distributive property:
$= x(2x+3) - 4(2x+3)$
$= (x \times 2x) + (x \times 3) - (4 \times 2x) - (4 \times 3)$
$= 2x^2 + 3x - 8x - 12$
Now, combine the like terms (the middle terms):
$= 2x^2 + (3-8)x - 12$
$= 2x^2 - 5x - 12$
The product is $2x^2 - 5x - 12$.
(ii) (x – y) and (3x + 5y)
Product = $(x - y)(3x + 5y)$
Using the distributive property:
$= x(3x+5y) - y(3x+5y)$
$= (x \times 3x) + (x \times 5y) - (y \times 3x) - (y \times 5y)$
$= 3x^2 + 5xy - 3xy - 5y^2$
Now, combine the like terms (the middle terms):
$= 3x^2 + (5-3)xy - 5y^2$
$= 3x^2 + 2xy - 5y^2$
The product is $3x^2 + 2xy - 5y^2$.
Example 9: Multiply
(i) (a + 7) and (b – 5)
(ii) (a2 + 2b2) and (5a – 3b)
Answer:
We use the distributive property to multiply the two expressions. Each term of the first expression is multiplied by each term of the second expression.
(i) (a + 7) and (b – 5)
Product = $(a + 7)(b - 5)$
$= a(b - 5) + 7(b - 5)$
$= (a \times b) - (a \times 5) + (7 \times b) - (7 \times 5)$
$= ab - 5a + 7b - 35$
Since there are no like terms to combine, this is the final simplified expression.
The product is $ab - 5a + 7b - 35$.
(ii) (a2 + 2b2) and (5a – 3b)
Product = $(a^2 + 2b^2)(5a - 3b)$
$= a^2(5a - 3b) + 2b^2(5a - 3b)$
$= (a^2 \times 5a) - (a^2 \times 3b) + (2b^2 \times 5a) - (2b^2 \times 3b)$
$= 5a^3 - 3a^2b + 10ab^2 - 6b^3$
There are no like terms to combine in this result.
The product is $5a^3 - 3a^2b + 10ab^2 - 6b^3$.
Example 10: Simplify (a + b) (2a – 3b + c) – (2a – 3b) c.
Answer:
Solution:
We need to simplify the expression $(a + b) (2a – 3b + c) – (2a – 3b) c$.
We will handle the two parts of the expression separately and then combine them.
Part 1: Simplify $(a + b) (2a – 3b + c)$
We multiply each term of $(a+b)$ by each term of $(2a - 3b + c)$.
$a(2a - 3b + c) + b(2a - 3b + c)$
$= (a \times 2a) - (a \times 3b) + (a \times c) + (b \times 2a) - (b \times 3b) + (b \times c)$
$= 2a^2 - 3ab + ac + 2ab - 3b^2 + bc$
Combine like terms ($-3ab$ and $+2ab$):
$= 2a^2 - ab + ac - 3b^2 + bc$
Part 2: Simplify $– (2a – 3b) c$
We multiply $-c$ with each term of $(2a - 3b)$.
$-c(2a - 3b) = -(c \times 2a) - (-c \times 3b)$
$= -2ac + 3bc$
Step 3: Combine the results from Part 1 and Part 2
Now we add the simplified expressions:
$(2a^2 - ab + ac - 3b^2 + bc) + (-2ac + 3bc)$
$= 2a^2 - ab + ac - 3b^2 + bc - 2ac + 3bc$
Group and combine the like terms:
$= 2a^2 - 3b^2 - ab + (bc + 3bc) + (ac - 2ac)$
$= 2a^2 - 3b^2 - ab + 4bc - ac$
Final Answer:
The simplified expression is $2a^2 - 3b^2 - ab + 4bc - ac$.
Exercise 9.4
Question 1. Multiply the binomials.
(i) (2x + 5) and (4x – 3)
(ii) (y – 8) and (3y – 4)
(iii) (2.5l – 0.5m) and (2.5l + 0.5m)
(iv) (a + 3b) and (x + 5)
(v) (2pq + 3q2) and (3pq – 2q2)
(vi) $\left( \frac{3}{4}a^2 + 3b^2 \right)$ and $4\left( a^2 - \frac{2}{3}b^2 \right)$
Answer:
To multiply the binomials, we use the distributive property, where each term of the first binomial is multiplied by each term of the second binomial. The general form is $(a+b)(c+d) = a(c+d) + b(c+d) = ac + ad + bc + bd$.
(i) (2x + 5) and (4x – 3)
Product = $(2x + 5)(4x - 3)$
$= 2x(4x - 3) + 5(4x - 3)$
$= (2x \times 4x) - (2x \times 3) + (5 \times 4x) - (5 \times 3)$
$= 8x^2 - 6x + 20x - 15$
Combine the like terms ($-6x$ and $+20x$):
$= 8x^2 + 14x - 15$
The product is $8x^2 + 14x - 15$.
(ii) (y – 8) and (3y – 4)
Product = $(y - 8)(3y - 4)$
$= y(3y - 4) - 8(3y - 4)$
$= (y \times 3y) - (y \times 4) - (8 \times 3y) - (8 \times -4)$
$= 3y^2 - 4y - 24y + 32$
Combine the like terms ($-4y$ and $-24y$):
$= 3y^2 - 28y + 32$
The product is $3y^2 - 28y + 32$.
(iii) (2.5l – 0.5m) and (2.5l + 0.5m)
This multiplication is in the form of the identity $(a-b)(a+b) = a^2 - b^2$.
Here, $a = 2.5l$ and $b = 0.5m$.
Product = $(2.5l)^2 - (0.5m)^2$
$= (2.5 \times 2.5 \times l \times l) - (0.5 \times 0.5 \times m \times m)$
$= 6.25l^2 - 0.25m^2$
The product is $6.25l^2 - 0.25m^2$.
(iv) (a + 3b) and (x + 5)
Product = $(a + 3b)(x + 5)$
$= a(x + 5) + 3b(x + 5)$
$= (a \times x) + (a \times 5) + (3b \times x) + (3b \times 5)$
$= ax + 5a + 3bx + 15b$
There are no like terms to combine.
The product is $ax + 5a + 3bx + 15b$.
(v) (2pq + 3q2) and (3pq – 2q2)
Product = $(2pq + 3q^2)(3pq - 2q^2)$
$= 2pq(3pq - 2q^2) + 3q^2(3pq - 2q^2)$
$= (2pq \times 3pq) - (2pq \times 2q^2) + (3q^2 \times 3pq) - (3q^2 \times 2q^2)$
$= 6p^2q^2 - 4pq^3 + 9pq^3 - 6q^4$
Combine the like terms ($-4pq^3$ and $+9pq^3$):
$= 6p^2q^2 + 5pq^3 - 6q^4$
The product is $6p^2q^2 + 5pq^3 - 6q^4$.
(vi) $\left( \frac{3}{4}a^2 + 3b^2 \right)$ and $4\left( a^2 - \frac{2}{3}b^2 \right)$
First, simplify the second expression by multiplying 4 inside:
$4\left( a^2 - \frac{2}{3}b^2 \right) = 4a^2 - \frac{8}{3}b^2$
Now, multiply the two binomials:
Product = $\left( \frac{3}{4}a^2 + 3b^2 \right) \left( 4a^2 - \frac{8}{3}b^2 \right)$
$= \frac{3}{4}a^2 \left( 4a^2 - \frac{8}{3}b^2 \right) + 3b^2 \left( 4a^2 - \frac{8}{3}b^2 \right)$
$= \left(\frac{3}{4}a^2 \times 4a^2\right) - \left(\frac{3}{4}a^2 \times \frac{8}{3}b^2\right) + \left(3b^2 \times 4a^2\right) - \left(3b^2 \times \frac{8}{3}b^2\right)$
$= 3a^4 - \left(\frac{24}{12}a^2b^2\right) + 12a^2b^2 - \left(\frac{24}{3}b^4\right)$
$= 3a^4 - 2a^2b^2 + 12a^2b^2 - 8b^4$
Combine the like terms ($-2a^2b^2$ and $+12a^2b^2$):
$= 3a^4 + 10a^2b^2 - 8b^4$
The product is $3a^4 + 10a^2b^2 - 8b^4$.
Question 2. Find the product.
(i) (5 – 2x) (3 + x)
(ii) (x + 7y) (7x – y)
(iii) (a2 + b) (a + b2)
(iv) (p2 – q2) (2p + q)
Answer:
To find the product of the binomials, we use the distributive property. Each term of the first binomial is multiplied by each term of the second binomial, and then the like terms are combined.
(i) (5 – 2x) (3 + x)
Product = $(5 - 2x)(3 + x)$
$= 5(3 + x) - 2x(3 + x)$
$= (5 \times 3) + (5 \times x) - (2x \times 3) - (2x \times x)$
$= 15 + 5x - 6x - 2x^2$
Combine the like terms ($+5x$ and $-6x$):
$= 15 - x - 2x^2$
Arranging in standard form (decreasing powers of x):
$= -2x^2 - x + 15$
The product is $-2x^2 - x + 15$.
(ii) (x + 7y) (7x – y)
Product = $(x + 7y)(7x - y)$
$= x(7x - y) + 7y(7x - y)$
$= (x \times 7x) - (x \times y) + (7y \times 7x) - (7y \times y)$
$= 7x^2 - xy + 49xy - 7y^2$
Combine the like terms ($-xy$ and $+49xy$):
$= 7x^2 + 48xy - 7y^2$
The product is $7x^2 + 48xy - 7y^2$.
(iii) (a2 + b) (a + b2)
Product = $(a^2 + b)(a + b^2)$
$= a^2(a + b^2) + b(a + b^2)$
$= (a^2 \times a) + (a^2 \times b^2) + (b \times a) + (b \times b^2)$
$= a^3 + a^2b^2 + ab + b^3$
There are no like terms to combine.
The product is $a^3 + a^2b^2 + ab + b^3$.
(iv) (p2 – q2) (2p + q)
Product = $(p^2 - q^2)(2p + q)$
$= p^2(2p + q) - q^2(2p + q)$
$= (p^2 \times 2p) + (p^2 \times q) - (q^2 \times 2p) - (q^2 \times q)$
$= 2p^3 + p^2q - 2pq^2 - q^3$
There are no like terms to combine.
The product is $2p^3 + p^2q - 2pq^2 - q^3$.
Question 3. Simplify.
(i) (x2 – 5) (x + 5) + 25
(ii) (a2 + 5) (b3 + 3) + 5
(iii) (t + s2) (t2 – s)
(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
(v) (x + y)(2x + y) + (x + 2y)(x – y)
(vi) (x + y)(x2 – xy + y2)
(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y
(viii) (a + b + c)(a + b – c)
Answer:
(i) (x2 – 5) (x + 5) + 25
First, we multiply the binomials $(x^2 - 5)$ and $(x+5)$ using the distributive property.
$(x^2 - 5)(x + 5) = x^2(x + 5) - 5(x + 5)$
$= (x^2 \times x) + (x^2 \times 5) - (5 \times x) - (5 \times 5)$
$= x^3 + 5x^2 - 5x - 25$
Now, we add the remaining term, 25, to this result.
Expression = $(x^3 + 5x^2 - 5x - 25) + 25$
$= x^3 + 5x^2 - 5x - 25 + 25$
$= x^3 + 5x^2 - 5x$
The simplified expression is $x^3 + 5x^2 - 5x$.
(ii) (a2 + 5) (b3 + 3) + 5
First, multiply the binomials $(a^2 + 5)$ and $(b^3 + 3)$.
$(a^2 + 5)(b^3 + 3) = a^2(b^3 + 3) + 5(b^3 + 3)$
$= (a^2 \times b^3) + (a^2 \times 3) + (5 \times b^3) + (5 \times 3)$
$= a^2b^3 + 3a^2 + 5b^3 + 15$
Now, add the remaining term, 5, to this result.
Expression = $(a^2b^3 + 3a^2 + 5b^3 + 15) + 5$
$= a^2b^3 + 3a^2 + 5b^3 + 20$
The simplified expression is $a^2b^3 + 3a^2 + 5b^3 + 20$.
(iii) (t + s2) (t2 – s)
We multiply the two binomials using the distributive property.
$(t + s^2)(t^2 - s) = t(t^2 - s) + s^2(t^2 - s)$
$= (t \times t^2) - (t \times s) + (s^2 \times t^2) - (s^2 \times s)$
$= t^3 - ts + s^2t^2 - s^3$
The simplified expression is $t^3 + s^2t^2 - ts - s^3$.
(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)
We simplify each part of the expression first.
Part 1: $(a + b)(c - d) = ac - ad + bc - bd$
Part 2: $(a - b)(c + d) = ac + ad - bc - bd$
Part 3: $2(ac + bd) = 2ac + 2bd$
Now, we add the results of all three parts:
$(ac - ad + bc - bd) + (ac + ad - bc - bd) + (2ac + 2bd)$
Group the like terms:
$(ac + ac + 2ac) + (-ad + ad) + (bc - bc) + (-bd - bd + 2bd)$
$= 4ac + 0 + 0 + 0$
$= 4ac$
The simplified expression is $4ac$.
(v) (x + y)(2x + y) + (x + 2y)(x – y)
We simplify each product separately.
Part 1: $(x + y)(2x + y) = x(2x+y) + y(2x+y) = 2x^2 + xy + 2xy + y^2 \ $$ = 2x^2 + 3xy + y^2$
Part 2: $(x + 2y)(x - y) = x(x-y) + 2y(x-y) = x^2 - xy + 2xy - 2y^2 \ $$ = x^2 + xy - 2y^2$
Now, we add the two results:
$(2x^2 + 3xy + y^2) + (x^2 + xy - 2y^2)$
Group and combine like terms:
$(2x^2 + x^2) + (3xy + xy) + (y^2 - 2y^2)$
$= 3x^2 + 4xy - y^2$
The simplified expression is $3x^2 + 4xy - y^2$.
(vi) (x + y)(x2 – xy + y2)
We multiply the binomial with the trinomial.
$= x(x^2 - xy + y^2) + y(x^2 - xy + y^2)$
$= (x^3 - x^2y + xy^2) + (x^2y - xy^2 + y^3)$
Group and combine like terms:
$= x^3 + (-x^2y + x^2y) + (xy^2 - xy^2) + y^3$
$= x^3 + 0 + 0 + y^3$
$= x^3 + y^3$
The simplified expression is $x^3 + y^3$.
(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y
First, multiply the binomial and the trinomial.
$(1.5x - 4y)(1.5x + 4y + 3)$
$= 1.5x(1.5x + 4y + 3) - 4y(1.5x + 4y + 3)$
$= (2.25x^2 + 6xy + 4.5x) - (6xy + 16y^2 + 12y)$
$= 2.25x^2 + 6xy + 4.5x - 6xy - 16y^2 - 12y$
$= 2.25x^2 - 16y^2 + 4.5x - 12y$
Now, include the rest of the original expression:
$(2.25x^2 - 16y^2 + 4.5x - 12y) - 4.5x + 12y$
Group and combine like terms:
$= 2.25x^2 - 16y^2 + (4.5x - 4.5x) + (-12y + 12y)$
$= 2.25x^2 - 16y^2 + 0 + 0$
$= 2.25x^2 - 16y^2$
The simplified expression is $2.25x^2 - 16y^2$.
(viii) (a + b + c)(a + b – c)
We can group the terms as $[(a+b) + c][(a+b) - c]$.
This is in the form of the identity $(x+y)(x-y) = x^2 - y^2$, where $x = (a+b)$ and $y = c$.
$= (a+b)^2 - c^2$
Now, we expand $(a+b)^2$ using the identity $(a+b)^2 = a^2 + 2ab + b^2$.
$= a^2 + 2ab + b^2 - c^2$
The simplified expression is $a^2 + b^2 - c^2 + 2ab$.
Example 11 to 14 (Before Exercise 9.5)
Example 11: Using the Identity (I), find
(i) (2x + 3y)2
(ii) 1032
Answer:
Solution:
The Identity (I) is: $(a + b)^2 = a^2 + 2ab + b^2$
(i) (2x + 3y)2
We can use Identity (I) by letting $a = 2x$ and $b = 3y$.
$(2x + 3y)^2 = (2x)^2 + 2(2x)(3y) + (3y)^2$
Now, we simplify each term:
$(2x)^2 = 2^2 \times x^2 = 4x^2$
$2(2x)(3y) = (2 \times 2 \times 3)(x \times y) = 12xy$
$(3y)^2 = 3^2 \times y^2 = 9y^2$
Combining these terms, we get:
$(2x + 3y)^2 = 4x^2 + 12xy + 9y^2$
The result is $4x^2 + 12xy + 9y^2$.
(ii) 1032
We can write 103 as a sum of two numbers, for example, $100 + 3$.
$103^2 = (100 + 3)^2$
Now, we can apply Identity (I) with $a = 100$ and $b = 3$.
$(100 + 3)^2 = (100)^2 + 2(100)(3) + (3)^2$
Simplify each term:
$(100)^2 = 10000$
$2(100)(3) = 600$
$(3)^2 = 9$
Adding these results:
$10000 + 600 + 9 = 10609$
The result is $10609$.
Example 12: Using Identity (II), find
(i) (4p – 3q)2
(ii) (4.9)2
Answer:
Solution:
The Identity (II) is: $(a - b)^2 = a^2 - 2ab + b^2$
(i) (4p – 3q)2
We use Identity (II) by setting $a = 4p$ and $b = 3q$.
$(4p - 3q)^2 = (4p)^2 - 2(4p)(3q) + (3q)^2$
Simplify each term:
$(4p)^2 = 4^2 \times p^2 = 16p^2$
$2(4p)(3q) = (2 \times 4 \times 3)(p \times q) = 24pq$
$(3q)^2 = 3^2 \times q^2 = 9q^2$
Combining the terms:
$(4p - 3q)^2 = 16p^2 - 24pq + 9q^2$
The result is $16p^2 - 24pq + 9q^2$.
(ii) (4.9)2
We can express 4.9 as a difference, for example, $5 - 0.1$.
$(4.9)^2 = (5 - 0.1)^2$
Now, we apply Identity (II) with $a = 5$ and $b = 0.1$.
$(5 - 0.1)^2 = (5)^2 - 2(5)(0.1) + (0.1)^2$
Simplify each term:
$(5)^2 = 25$
$2(5)(0.1) = 10 \times 0.1 = 1$
$(0.1)^2 = 0.01$
Performing the subtraction and addition:
$25 - 1 + 0.01 = 24 + 0.01 = 24.01$
The result is $24.01$.
Example 13: Using Identity (III), find
(i) $\left( \frac{3}{2}m + \frac{2}{3}n \right)\left( \frac{3}{2}m - \frac{2}{3}n \right)$
(ii) 9832 – 172
(iii) 194 × 206
Answer:
Solution:
The Identity (III) is the difference of squares: $(a + b)(a - b) = a^2 - b^2$
(i) $\left( \frac{3}{2}m + \frac{2}{3}n \right)\left( \frac{3}{2}m - \frac{2}{3}n \right)$
This expression is in the form of $(a+b)(a-b)$, where $a = \frac{3}{2}m$ and $b = \frac{2}{3}n$.
Using the identity, the product is $a^2 - b^2$.
Product = $\left(\frac{3}{2}m\right)^2 - \left(\frac{2}{3}n\right)^2$
$= \left(\frac{3^2}{2^2}m^2\right) - \left(\frac{2^2}{3^2}n^2\right)$
$= \frac{9}{4}m^2 - \frac{4}{9}n^2$
The result is $\frac{9}{4}m^2 - \frac{4}{9}n^2$.
(ii) 9832 – 172
This expression is in the form of $a^2 - b^2$, where $a = 983$ and $b = 17$.
Using the identity, this is equal to $(a+b)(a-b)$.
$983^2 - 17^2 = (983 + 17)(983 - 17)$
Calculate the terms in the brackets:
$983 + 17 = 1000$
$983 - 17 = 966$
Now, multiply the results:
$(1000)(966) = 966000$
The result is $966,000$.
(iii) 194 × 206
We can write 194 as $(200 - 6)$ and 206 as $(200 + 6)$.
So, the product is $(200 - 6)(200 + 6)$.
This is in the form of $(a - b)(a + b)$, where $a = 200$ and $b = 6$.
Using the identity, this is equal to $a^2 - b^2$.
$(200 - 6)(200 + 6) = (200)^2 - (6)^2$
Calculate the squares:
$(200)^2 = 40000$
$(6)^2 = 36$
Now, perform the subtraction:
$40000 - 36 = 39964$
The result is $39,964$.
Example 14: Use the Identity (x + a) (x + b) = x2 + (a + b) x + ab to find the following:
(i) 501 × 502
(ii) 95 × 103
Answer:
Solution:
The Identity is: $(x + a)(x + b) = x^2 + (a + b)x + ab$
(i) 501 × 502
We can express the numbers in the form $(x+a)$ and $(x+b)$.
$501 = 500 + 1$
$502 = 500 + 2$
So, the product is $(500 + 1)(500 + 2)$.
Here, $x = 500$, $a = 1$, and $b = 2$.
Using the identity:
$(500 + 1)(500 + 2) = (500)^2 + (1 + 2)(500) + (1)(2)$
Simplify each term:
$(500)^2 = 250000$
$(1 + 2)(500) = 3 \times 500 = 1500$
$(1)(2) = 2$
Add the results:
$250000 + 1500 + 2 = 251502$
The result is $251,502$.
(ii) 95 × 103
We can express the numbers in the form $(x+a)$ and $(x+b)$. A good choice for $x$ is 100.
$95 = 100 - 5$
$103 = 100 + 3$
So, the product is $(100 - 5)(100 + 3)$.
Here, $x = 100$, $a = -5$, and $b = 3$.
Using the identity:
$(100 - 5)(100 + 3) = (100)^2 + (-5 + 3)(100) + (-5)(3)$
Simplify each term:
$(100)^2 = 10000$
$(-5 + 3)(100) = -2 \times 100 = -200$
$(-5)(3) = -15$
Combine the results:
$10000 - 200 - 15 = 9800 - 15 = 9785$
The result is $9,785$.
Exercise 9.5
Question 1. Use a suitable identity to get each of the following products.
(i) (x + 3) (x + 3)
(ii) (2y + 5) (2y + 5)
(iii) (2a – 7) (2a – 7)
(iv) $\left( 3a - \frac{1}{2} \right)\left( 3a - \frac{1}{2} \right)$
(v) (1.1m – 0.4) (1.1m + 0.4)
(vi) (a2 + b2) (– a2 + b2)
(vii) (6x – 7) (6x + 7)
(viii) (– a + c) (– a + c)
(ix) $\left( \frac{x}{2} + \frac{3y}{4} \right)\left( \frac{x}{2} + \frac{3y}{4} \right)$
(x) (7a – 9b) (7a – 9b)
Answer:
(i) (x + 3) (x + 3)
This is of the form $(a+b)(a+b) = (a+b)^2$. We use the identity $(a+b)^2 = a^2 + 2ab + b^2$.
Here, $a=x$ and $b=3$.
$(x+3)^2 = (x)^2 + 2(x)(3) + (3)^2 = x^2 + 6x + 9$.
(ii) (2y + 5) (2y + 5)
This is of the form $(a+b)^2$. Here, $a=2y$ and $b=5$.
$(2y+5)^2 = (2y)^2 + 2(2y)(5) + (5)^2 = 4y^2 + 20y + 25$.
(iii) (2a – 7) (2a – 7)
This is of the form $(a-b)(a-b) = (a-b)^2$. We use the identity $(a-b)^2 = a^2 - 2ab + b^2$.
Here, $a=2a$ and $b=7$.
$(2a-7)^2 = (2a)^2 - 2(2a)(7) + (7)^2 = 4a^2 - 28a + 49$.
(iv) $\left( 3a - \frac{1}{2} \right)\left( 3a - \frac{1}{2} \right)$
This is of the form $(a-b)^2$. Here, $a=3a$ and $b=\frac{1}{2}$.
$\left(3a - \frac{1}{2}\right)^2 = (3a)^2 - 2(3a)\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^2 = 9a^2 - 3a + \frac{1}{4}$.
(v) (1.1m – 0.4) (1.1m + 0.4)
This is of the form $(a-b)(a+b)$. We use the identity $(a-b)(a+b) = a^2 - b^2$.
Here, $a=1.1m$ and $b=0.4$.
$(1.1m)^2 - (0.4)^2 = 1.21m^2 - 0.16$.
(vi) (a2 + b2) (– a2 + b2)
We can rearrange the terms to fit the identity: $(b^2 + a^2)(b^2 - a^2)$.
This is of the form $(x+y)(x-y) = x^2 - y^2$. Here, $x=b^2$ and $y=a^2$.
$(b^2)^2 - (a^2)^2 = b^4 - a^4$.
(vii) (6x – 7) (6x + 7)
This is of the form $(a-b)(a+b) = a^2 - b^2$.
Here, $a=6x$ and $b=7$.
$(6x)^2 - (7)^2 = 36x^2 - 49$.
(viii) (– a + c) (– a + c)
This can be written as $(c-a)(c-a) = (c-a)^2$.
Using the identity $(x-y)^2 = x^2 - 2xy + y^2$, where $x=c$ and $y=a$.
$(c)^2 - 2(c)(a) + (a)^2 = c^2 - 2ac + a^2$.
(ix) $\left( \frac{x}{2} + \frac{3y}{4} \right)\left( \frac{x}{2} + \frac{3y}{4} \right)$
This is of the form $(a+b)^2$. Here, $a=\frac{x}{2}$ and $b=\frac{3y}{4}$.
$\left(\frac{x}{2}\right)^2 + 2\left(\frac{x}{2}\right)\left(\frac{3y}{4}\right) + \left(\frac{3y}{4}\right)^2 = \frac{x^2}{4} + \frac{3xy}{4} + \frac{9y^2}{16}$.
(x) (7a – 9b) (7a – 9b)
This is of the form $(a-b)^2$. Here, the first term is $7a$ and the second term is $9b$.
$(7a)^2 - 2(7a)(9b) + (9b)^2 = 49a^2 - 126ab + 81b^2$.
Question 2. Use the identity (x + a) (x + b) = x2 + (a + b) x + ab to find the following products.
(i) (x + 3) (x + 7)
(ii) (4x + 5) (4x + 1)
(iii) (4x – 5) (4x – 1)
(iv) (4x + 5) (4x – 1)
(v) (2x + 5y) (2x + 3y)
(vi) (2a2 + 9) (2a2 + 5)
(vii) (xyz – 4) (xyz – 2)
Answer:
The identity to be used is: $(X + a)(X + b) = X^2 + (a+b)X + ab$.
(i) (x + 3) (x + 7)
Here, $X=x$, $a=3$, $b=7$.
Product = $x^2 + (3+7)x + (3)(7)$
$= x^2 + 10x + 21$.
(ii) (4x + 5) (4x + 1)
Here, $X=4x$, $a=5$, $b=1$.
Product = $(4x)^2 + (5+1)(4x) + (5)(1)$
$= 16x^2 + 6(4x) + 5$
$= 16x^2 + 24x + 5$.
(iii) (4x – 5) (4x – 1)
Here, $X=4x$, $a=-5$, $b=-1$.
Product = $(4x)^2 + (-5 + (-1))(4x) + (-5)(-1)$
$= 16x^2 + (-6)(4x) + 5$
$= 16x^2 - 24x + 5$.
(iv) (4x + 5) (4x – 1)
Here, $X=4x$, $a=5$, $b=-1$.
Product = $(4x)^2 + (5 + (-1))(4x) + (5)(-1)$
$= 16x^2 + (4)(4x) - 5$
$= 16x^2 + 16x - 5$.
(v) (2x + 5y) (2x + 3y)
Here, $X=2x$, $a=5y$, $b=3y$.
Product = $(2x)^2 + (5y+3y)(2x) + (5y)(3y)$
$= 4x^2 + (8y)(2x) + 15y^2$
$= 4x^2 + 16xy + 15y^2$.
(vi) (2a2 + 9) (2a2 + 5)
Here, $X=2a^2$, $a=9$, $b=5$.
Product = $(2a^2)^2 + (9+5)(2a^2) + (9)(5)$
$= 4a^4 + 14(2a^2) + 45$
$= 4a^4 + 28a^2 + 45$.
(vii) (xyz – 4) (xyz – 2)
Here, $X=xyz$, $a=-4$, $b=-2$.
Product = $(xyz)^2 + (-4 + (-2))(xyz) + (-4)(-2)$
$= x^2y^2z^2 + (-6)(xyz) + 8$
$= x^2y^2z^2 - 6xyz + 8$.
Question 3. Find the following squares by using the identities.
(i) (b – 7)2
(ii) (xy + 3z)2
(iii) (6x2 – 5y)2
(iv) $\left( \frac{2}{3} m \;+\;\frac{3}{2}n\right)^2$
(v) (0.4p – 0.5q)2
(vi) (2xy + 5y)2
Answer:
(i) (b – 7)2
Using the identity $(a-b)^2 = a^2 - 2ab + b^2$, with $a=b$ and $b=7$.
$(b-7)^2 = (b)^2 - 2(b)(7) + (7)^2 = b^2 - 14b + 49$.
(ii) (xy + 3z)2
Using the identity $(a+b)^2 = a^2 + 2ab + b^2$, with $a=xy$ and $b=3z$.
$(xy+3z)^2 = (xy)^2 + 2(xy)(3z) + (3z)^2 = x^2y^2 + 6xyz + 9z^2$.
(iii) (6x2 – 5y)2
Using the identity $(a-b)^2 = a^2 - 2ab + b^2$, with $a=6x^2$ and $b=5y$.
$(6x^2-5y)^2 = (6x^2)^2 - 2(6x^2)(5y) + (5y)^2 = 36x^4 - 60x^2y + 25y^2$.
(iv) $\left( \frac{2}{3} m \;+\;\frac{3}{2}n\right)^2$
Using the identity $(a+b)^2 = a^2 + 2ab + b^2$, with $a=\frac{2}{3}m$ and $b=\frac{3}{2}n$.
$\left(\frac{2}{3}m\right)^2 + 2\left(\frac{2}{3}m\right)\left(\frac{3}{2}n\right) + \left(\frac{3}{2}n\right)^2$
$= \frac{4}{9}m^2 + 2(mn) + \frac{9}{4}n^2 = \frac{4}{9}m^2 + 2mn + \frac{9}{4}n^2$.
(v) (0.4p – 0.5q)2
Using the identity $(a-b)^2 = a^2 - 2ab + b^2$, with $a=0.4p$ and $b=0.5q$.
$(0.4p)^2 - 2(0.4p)(0.5q) + (0.5q)^2$
$= 0.16p^2 - 2(0.2pq) + 0.25q^2 = 0.16p^2 - 0.4pq + 0.25q^2$.
(vi) (2xy + 5y)2
Using the identity $(a+b)^2 = a^2 + 2ab + b^2$, with $a=2xy$ and $b=5y$.
$(2xy)^2 + 2(2xy)(5y) + (5y)^2 = 4x^2y^2 + 20xy^2 + 25y^2$.
Question 4. Simplify.
(i) (a2 – b2)2
(ii) (2x + 5)2 – (2x – 5)2
(iii) (7m – 8n)2 + (7m + 8n)2
(iv) (4m + 5n)2 + (5m + 4n)2
(v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
(vi) (ab + bc)2 – 2ab2c
(vii) (m2 – n2m)2 + 2m3n2
Answer:
(i) (a2 – b2)2
Using the identity $(x-y)^2 = x^2 - 2xy + y^2$, with $x=a^2$ and $y=b^2$.
$(a^2)^2 - 2(a^2)(b^2) + (b^2)^2 = a^4 - 2a^2b^2 + b^4$.
(ii) (2x + 5)2 – (2x – 5)2
This is of the form $a^2 - b^2$, where $a = (2x+5)$ and $b = (2x-5)$. We use the identity $a^2-b^2 = (a+b)(a-b)$.
$= [(2x+5) + (2x-5)][(2x+5) - (2x-5)]$
$= [2x+5+2x-5][2x+5-2x+5]$
$= [4x][10] = 40x$.
(iii) (7m – 8n)2 + (7m + 8n)2
We expand both terms using $(a-b)^2$ and $(a+b)^2$.
$= (49m^2 - 112mn + 64n^2) + (49m^2 + 112mn + 64n^2)$
Combine like terms:
$= (49m^2+49m^2) + (-112mn+112mn) + (64n^2+64n^2)$
$= 98m^2 + 0 + 128n^2 = 98m^2 + 128n^2$.
(iv) (4m + 5n)2 + (5m + 4n)2
Expand both terms:
$= ((4m)^2 + 2(4m)(5n) + (5n)^2) + ((5m)^2 + 2(5m)(4n) + (4n)^2)$
$= (16m^2 + 40mn + 25n^2) + (25m^2 + 40mn + 16n^2)$
Combine like terms:
$= (16m^2+25m^2) + (40mn+40mn) + (25n^2+16n^2)$
$= 41m^2 + 80mn + 41n^2$.
(v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
Using the identity $a^2 - b^2 = (a+b)(a-b)$, with $a = (2.5p-1.5q)$ and $b = (1.5p-2.5q)$.
$= [(2.5p-1.5q) + (1.5p-2.5q)][(2.5p-1.5q) - (1.5p-2.5q)]$
$= [2.5p-1.5q+1.5p-2.5q][2.5p-1.5q-1.5p+2.5q]$
$= [4p - 4q][p + q] = 4(p-q)(p+q) = 4(p^2 - q^2)$.
(vi) (ab + bc)2 – 2ab2c
First, expand $(ab+bc)^2$ using $(x+y)^2 = x^2 + 2xy + y^2$.
$= (ab)^2 + 2(ab)(bc) + (bc)^2 - 2ab^2c$
$= a^2b^2 + 2ab^2c + b^2c^2 - 2ab^2c$
Combine like terms:
$= a^2b^2 + b^2c^2$.
(vii) (m2 – n2m)2 + 2m3n2
First, expand $(m^2 - n^2m)^2$ using $(x-y)^2 = x^2 - 2xy + y^2$.
$= (m^2)^2 - 2(m^2)(n^2m) + (n^2m)^2 + 2m^3n^2$
$= m^4 - 2m^3n^2 + n^4m^2 + 2m^3n^2$
Combine like terms:
$= m^4 + n^4m^2$.
Question 5. Show that.
(i) (3x + 7)2 – 84x = (3x – 7)2
(ii) (9p – 5q)2 + 180pq = (9p + 5q)2
(iii) $\left( \frac{4}{3} m \;-\;\frac{3}{4}n\right)^2$ + 2mn = $\frac{16}{9}$m2 + $\frac{9}{16}$n2
(iv) (4pq + 3q)2 – (4pq – 3q)2 = 48pq2
(v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
Answer:
To show that the given equations are true, we will simplify the Left Hand Side (L.H.S.) and show that it is equal to the Right Hand Side (R.H.S.).
(i) (3x + 7)2 – 84x = (3x – 7)2
L.H.S. = $(3x + 7)^2 - 84x$
Expand $(3x+7)^2$ using $(a+b)^2 = a^2+2ab+b^2$:
L.H.S. = $((3x)^2 + 2(3x)(7) + 7^2) - 84x$
$= (9x^2 + 42x + 49) - 84x$
$= 9x^2 + 42x - 84x + 49$
$= 9x^2 - 42x + 49$
Now, let's look at the R.H.S. = $(3x - 7)^2$.
Expand using $(a-b)^2 = a^2-2ab+b^2$:
R.H.S. = $(3x)^2 - 2(3x)(7) + 7^2$
$= 9x^2 - 42x + 49$
Since L.H.S. = R.H.S., the identity is shown to be true.
(ii) (9p – 5q)2 + 180pq = (9p + 5q)2
L.H.S. = $(9p - 5q)^2 + 180pq$
Expand $(9p-5q)^2$ using $(a-b)^2 = a^2-2ab+b^2$:
L.H.S. = $((9p)^2 - 2(9p)(5q) + (5q)^2) + 180pq$
$= (81p^2 - 90pq + 25q^2) + 180pq$
$= 81p^2 - 90pq + 180pq + 25q^2$
$= 81p^2 + 90pq + 25q^2$
Now, let's expand the R.H.S. = $(9p + 5q)^2$ using $(a+b)^2 = a^2+2ab+b^2$:
R.H.S. = $(9p)^2 + 2(9p)(5q) + (5q)^2$
$= 81p^2 + 90pq + 25q^2$
Since L.H.S. = R.H.S., the identity is shown to be true.
(iii) $\left( \frac{4}{3} m \;-\;\frac{3}{4}n\right)^2$ + 2mn = $\frac{16}{9}$m2 + $\frac{9}{16}$n2
L.H.S. = $\left( \frac{4}{3}m - \frac{3}{4}n \right)^2 + 2mn$
Expand the squared term using $(a-b)^2 = a^2-2ab+b^2$:
L.H.S. = $\left(\left(\frac{4}{3}m\right)^2 - 2\left(\frac{4}{3}m\right)\left(\frac{3}{4}n\right) + \left(\frac{3}{4}n\right)^2\right) + 2mn$
$= \left(\frac{16}{9}m^2 - 2mn + \frac{9}{16}n^2\right) + 2mn$
$= \frac{16}{9}m^2 - 2mn + 2mn + \frac{9}{16}n^2$
$= \frac{16}{9}m^2 + \frac{9}{16}n^2$
This is equal to the R.H.S. Hence, the identity is shown to be true.
(iv) (4pq + 3q)2 – (4pq – 3q)2 = 48pq2
The L.H.S. is of the form $a^2 - b^2$, where $a = (4pq+3q)$ and $b = (4pq-3q)$.
Using the identity $a^2-b^2 = (a+b)(a-b)$:
L.H.S. = $[(4pq+3q) + (4pq-3q)][(4pq+3q) - (4pq-3q)]$
$= [4pq+3q+4pq-3q][4pq+3q-4pq+3q]$
$= [8pq][6q]$
$= 48pq^2$
This is equal to the R.H.S. Hence, the identity is shown to be true.
(v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
We simplify each term on the L.H.S. using the identity $(x-y)(x+y) = x^2-y^2$.
Part 1: $(a - b)(a + b) = a^2 - b^2$
Part 2: $(b - c)(b + c) = b^2 - c^2$
Part 3: $(c - a)(c + a) = c^2 - a^2$
Now, add these three results:
L.H.S. = $(a^2 - b^2) + (b^2 - c^2) + (c^2 - a^2)$
$= a^2 - b^2 + b^2 - c^2 + c^2 - a^2$
Group like terms:
$= (a^2 - a^2) + (-b^2 + b^2) + (-c^2 + c^2)$
$= 0 + 0 + 0 = 0$
This is equal to the R.H.S. Hence, the identity is shown to be true.
Question 6. Using identities, evaluate.
(i) 712
(ii) 992
(iii) 1022
(iv) 9982
(v) 5.22
(vi) 297 × 303
(vii) 78 × 82
(viii) 8.92
(ix) 10.5 × 9.5
Answer:
(i) 712
We can write 71 as $(70+1)$.
$71^2 = (70+1)^2$. Using $(a+b)^2 = a^2+2ab+b^2$:
$= 70^2 + 2(70)(1) + 1^2 = 4900 + 140 + 1 = 5041$.
(ii) 992
We can write 99 as $(100-1)$.
$99^2 = (100-1)^2$. Using $(a-b)^2 = a^2-2ab+b^2$:
$= 100^2 - 2(100)(1) + 1^2 = 10000 - 200 + 1 = 9801$.
(iii) 1022
We can write 102 as $(100+2)$.
$102^2 = (100+2)^2$. Using $(a+b)^2 = a^2+2ab+b^2$:
$= 100^2 + 2(100)(2) + 2^2 = 10000 + 400 + 4 = 10404$.
(iv) 9982
We can write 998 as $(1000-2)$.
$998^2 = (1000-2)^2$. Using $(a-b)^2 = a^2-2ab+b^2$:
$= 1000^2 - 2(1000)(2) + 2^2 = 1000000 - 4000 + 4 = 996004$.
(v) 5.22
We can write 5.2 as $(5+0.2)$.
$5.2^2 = (5+0.2)^2$. Using $(a+b)^2 = a^2+2ab+b^2$:
$= 5^2 + 2(5)(0.2) + (0.2)^2 = 25 + 2 + 0.04 = 27.04$.
(vi) 297 × 303
We can write 297 as $(300-3)$ and 303 as $(300+3)$.
This is of the form $(a-b)(a+b) = a^2-b^2$.
$= 300^2 - 3^2 = 90000 - 9 = 89991$.
(vii) 78 × 82
We can write 78 as $(80-2)$ and 82 as $(80+2)$.
This is of the form $(a-b)(a+b) = a^2-b^2$.
$= 80^2 - 2^2 = 6400 - 4 = 6396$.
(viii) 8.92
We can write 8.9 as $(9-0.1)$.
$8.9^2 = (9-0.1)^2$. Using $(a-b)^2 = a^2-2ab+b^2$:
$= 9^2 - 2(9)(0.1) + (0.1)^2 = 81 - 1.8 + 0.01 = 79.2 + 0.01 = 79.21$.
(ix) 10.5 × 9.5
We can write this as $(10+0.5) \times (10-0.5)$.
This is of the form $(a+b)(a-b) = a^2-b^2$.
$= 10^2 - (0.5)^2 = 100 - 0.25 = 99.75$.
Question 7. Using a2 – b2 = (a + b) (a – b), find
(i) 512 – 492
(ii) (1.02)2 – (0.98)2
(iii) 1532 – 1472
(iv) 12.12 – 7.92
Answer:
We use the identity $a^2 - b^2 = (a+b)(a-b)$ to solve the following problems.
(i) 512 – 492
Here, $a = 51$ and $b = 49$.
So, $51^2 - 49^2 = (51 + 49)(51 - 49)$
$= (100)(2)$
$= 200$
The value is 200.
(ii) (1.02)2 – (0.98)2
Here, $a = 1.02$ and $b = 0.98$.
So, $(1.02)^2 - (0.98)^2 = (1.02 + 0.98)(1.02 - 0.98)$
$= (2.00)(0.04)$
$= 0.08$
The value is 0.08.
(iii) 1532 – 1472
Here, $a = 153$ and $b = 147$.
So, $153^2 - 147^2 = (153 + 147)(153 - 147)$
$= (300)(6)$
$= 1800$
The value is 1800.
(iv) 12.12 – 7.92
Here, $a = 12.1$ and $b = 7.9$.
So, $12.1^2 - 7.9^2 = (12.1 + 7.9)(12.1 - 7.9)$
$= (20.0)(4.2)$
$= 84$
The value is 84.
Question 8. Using (x + a) (x + b) = x2 + (a + b) x + ab, find
(i) 103 × 104
(ii) 5.1 × 5.2
(iii) 103 × 98
(iv) 9.7 × 9.8
Answer:
We use the identity $(x + a)(x + b) = x^2 + (a+b)x + ab$ to solve the following problems.
(i) 103 × 104
We can write this as $(100 + 3)(100 + 4)$.
Here, $x=100$, $a=3$, and $b=4$.
Product = $(100)^2 + (3+4)(100) + (3)(4)$
$= 10000 + (7)(100) + 12$
$= 10000 + 700 + 12 = 10712$.
The value is 10,712.
(ii) 5.1 × 5.2
We can write this as $(5 + 0.1)(5 + 0.2)$.
Here, $x=5$, $a=0.1$, and $b=0.2$.
Product = $(5)^2 + (0.1 + 0.2)(5) + (0.1)(0.2)$
$= 25 + (0.3)(5) + 0.02$
$= 25 + 1.5 + 0.02 = 26.52$.
The value is 26.52.
(iii) 103 × 98
We can write this as $(100 + 3)(100 - 2)$.
Here, $x=100$, $a=3$, and $b=-2$.
Product = $(100)^2 + (3 + (-2))(100) + (3)(-2)$
$= 10000 + (1)(100) - 6$
$= 10000 + 100 - 6 = 10094$.
The value is 10,094.
(iv) 9.7 × 9.8
We can write this as $(10 - 0.3)(10 - 0.2)$.
Here, $x=10$, $a=-0.3$, and $b=-0.2$.
Product = $(10)^2 + (-0.3 + (-0.2))(10) + (-0.3)(-0.2)$
$= 100 + (-0.5)(10) + 0.06$
$= 100 - 5 + 0.06 = 95.06$.
The value is 95.06.